首页> 外文OA文献 >Collaborative Anomaly Detection Framework for handling Big Data of Cloud Computing
【2h】

Collaborative Anomaly Detection Framework for handling Big Data of Cloud Computing

机译:用于处理云大数据的协同异常检测框架   计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the ubiquitous computing of providing services and applications atanywhere and anytime, cloud computing is the best option as it offers flexibleand pay-per-use based services to its customers. Nevertheless, security andprivacy are the main challenges to its success due to its dynamic anddistributed architecture, resulting in generating big data that should becarefully analysed for detecting network vulnerabilities. In this paper, wepropose a Collaborative Anomaly Detection Framework CADF for detecting cyberattacks from cloud computing environments. We provide the technical functionsand deployment of the framework to illustrate its methodology of implementationand installation. The framework is evaluated on the UNSW-NB15 dataset to checkits credibility while deploying it in cloud computing environments. Theexperimental results showed that this framework can easily handle large-scalesystems as its implementation requires only estimating statistical measuresfrom network observations. Moreover, the evaluation performance of theframework outperforms three state-of-the-art techniques in terms of falsepositive rate and detection rate.
机译:随着无处不在的随时随地提供服务和应用程序的计算,云计算是最佳选择,因为它为客户提供了基于按使用情况付费的灵活服务。尽管如此,由于其动态且分布式的架构,安全性和保密性是其成功的主要挑战,导致生成大数据,应仔细分析这些大数据以检测网络漏洞。在本文中,我们提出了一种协作异常检测框架CADF,用于检测来自云计算环境的网络攻击。我们提供该框架的技术功能和部署,以说明其实施和安装方法。在将UNSW-NB15数据集部署到云计算环境中时,会对框架进行评估,以检查其可信度。实验结果表明,该框架可以轻松地处理大型系统,因为其实施仅需要从网络观察中估计统计量即可。此外,就假阳性率和检测率而言,框架的评估性能优于三种最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号